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Abstract 
Japanese listeners often have difficulties perceiving consonant clusters accurately and

report hearing a vowel between the consonants, despite Japanese speakers producing

numerous consonant clusters that result from a highly productive high vowel devoicing

process. This poses a substantial challenge for phonological learning, as the task is to

learn the strong CVCV preference in Japanese based on surface consonant clusters that

violate this very preference. The current study investigates this learnability issue by

building a computational model that induces Optimality Theoretic (OT) phonotactic

constraints based strictly on overt speech. Two versions of the model are tested: one

with classic OT-style faithfulness constraints that penalize violations, and one with

positive constraints that reward sequences conforming to the constraints. Both have

traditional markedness constraints. The results show that positive constraints are

superior to faithfulness constraints in modeling phonotactic repair. 
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1. Introduction 

 

The purpose of this paper is to provide a computational account of how prelexical 

infants might learn to “recover” a vowel that is not physically present in the acoustic 

input they receive (i.e., the caretaker’s speech), focusing on Japanese high vowels. The 

model being proposed is called the statistical learning and repair model (STAR). 

Japanese high vowels present a unique learnability problem because while Japanese is 

argued to have a strong preference for CVCV structure (Shibatani 1990), a highly 

productive high vowel devoicing process that often results in the complete loss of 

vowel gestures (Shaw and Kawahara 2018) creates numerous consonant cluster-like 

sequences in actual speech that violate this phonotactic restriction (e.g. suki → ski ‘to 

like’). Japanese infants therefore must learn that an apparent C1C2V sequence is 

equivalent to a C1{i/u}C2V sequence by recovering the devoiced or deleted high vowel 

through repair (e.g., C1 C2V → C1{i/u}C2V). Japanese infants as young as 12 months 

begin exhibiting insensitivity to C1C2V vs. C1VC2V distinctions (Kajikawa et al. 2006, 

Mugitani et al. 2007), suggesting that the repair process must be learnable pre-lexically 

at least in part. STAR is a first-pass attempt to model the acquisition of this repair 

process without a lexicon, and shows that positively defined constraints that reward 

rather than penalize certain sequences might be beneficial in phonotactic repair. 

The architecture of STAR is largely based on the statistical learning and 

generalization model (STAGE; Adriaans and Kager 2010), which was originally 

proposed to stimulate unsupervised word segmentation in pre-lexical infants. STAGE 

by design does not have a lexicon that provides feedback for the model; as such, STAR 

also assumes no lexicon while learning to recover high vowels by essentially reversing 

the Japanese high vowel devoicing/deletion process and recover high vowels. In 

addition, STAR uses the same frequency-driven constraint induction (FDCI) 

mechanism of STAGE, but the induced phonotactic constraints are used to repair the 

loci of phonotactic violations with an appropriate vowel, rather than simply break up 

an illicit sequence. 

Because STAR is a perception model, the model takes the overt form (symbolic 

representation of structureless, acoustic signal) as input and gives what the model 

thinks is the corresponding surface form (what Japanese listeners think they heard) as 

output. Tesar and Smolensky (1996) decompose the learning problem by first 

proposing three levels of representation that are relevant in phonological learning: 

[overt], /surface/, and |underlying| forms. The mapping from [overt] to /surface/ form 
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corresponds to perception, while the mapping from /surface/ to |underlying| form 

corresponds to word recognition (Apoussidou 2007). The overt form of a word is the 

concrete acoustic signal produced by a speaker. As it is purely an acoustic signal, it 

carries no inherent linguistic structure. Structure is added in the surface form by the 

listener based on one’s grammar. At this stage, the listener is yet to recognize the form 

as a word. To recognize a word, the listener must map the surface form to a matching 

underlying form in the lexicon. To give a more concrete example, a Japanese infant 

must learn to take an overt form like [s  ki] that begins with a cluster-like sequence, 

recover the devoiced high vowel as in /suki/ at the surface level, then arrive at the 

underlying representation |suki| ‘to like’. Since STAR is lexiconless, there is no 

underlying form to speak of, and thus the model takes (phonetically transcribed) [overt] 

forms as input and returns /surface/ forms as output. In other words, it models what a 

Japanese phonotactic grammar would “hear” given an acoustic input. 

The paper begins with a literature review in section 2 on how the issue of constraint-

based phonotactic acquisition has been treated within the Optimality Theoretic 

framework. The theoretical motivations for positively defined constraints as well as 

the experimental literature on Japanese high vowel production and perception are also 

discussed. Section 3 describes STAR in detail, starting with the data used to train the 

model and the process of how the model selects what it considers the most harmonic 

output. Section 4 gives simulation results that compare two versions of STAR, one with 

positive constraints and another with traditional faithfulness constraints that penalize 

violations. Section 5 concludes the paper with a summary and suggestions for future 

research. 

 

2. Background 

 

2.1 Constraint-based phonotactic acquisition 

 

In a constraint-based phonological framework, language learning essentially boils 

down to learning the correct constraint ranking. Most constraint-based frameworks 

assume innate constraints (e.g., Constraint Demotion Mechanism, Tesar 1995; Gradual 

Learning Algorithm, Boersma and Hayes 2001), but phonotactic learning models such 

as the maximum entropy model (MaxEnt; Hayes and Wilson 2008) successfully show 

that the constraints can be induced. MaxEnt assumes that Universal Grammar is 

composed of an innate set of features and a format for markedness constraints. Given 
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a feature set, the model induces all logically possible phonotactic constraints. From 

this space of possible constraints, the model selects and ranks the constraints in a way 

that maximizes the probability of the input data with a built-in preference for general 

constraints over specific constraints. The resulting constraint set therefore is language-

specific since constraints that were induced but are inactive in the given language are 

discarded. Because the MaxEnt model induces constraints based on a given feature set, 

the constraints in effect exist independently of any input data it receives. The model, 

therefore, explicitly does away with a universal constraint set (CON), which is a notable 

divergence from previous approaches. However, since the feature set is part of 

Univeral Grammar (UG), the result is still a universal constraint space which language 

learners must tap into to extract a language-specific constraint set. 

Adriaans and Kager (2010) propose the statistical learning and generalization model 

(STAGE), which also induces constraints based solely on the input. While STAGE 

assumes a universal feature set, unlike MaxEnt it has no built-in format for constraints 

and thus steps away from the notion of CON even further. Instead, STAGE employs 

frequency-driven learning and generalization mechanisms to induce constraints that 

are relevant for the data. Each constraint is assigned a weight based on the statistical 

distribution of the biphones the contraint is concerned with. As will be discussed in 

more detail in section 3, STAGE induces markedness constraints for underrepresented 

(dispreferred) biphones and faithfulness constraints for overrepresented (preferred) 

biphones. From the biphone-specific constraints, more general constraints are formed 

via single-feature abstraction. For example, suppose the model induces the constraints 

CONT-(bl) and CONT-(pl). These constraints are different by a single feature, namely 

voice. The generalization mechanism therefore takes these constraints and forms a 

more general constraint CONT-(x∈{p,b};y∈{l}), which says, “Assign a violation for 

every pl or bl sequence in the input that is not preserved in the output.” The model 

additionally showed that with the statistical and generalization mechanisms, a lexicon 

is not required for successful phonotactic learning but rather that phonotactic 

knowledge can help lexical acquisition.  

STAR takes the approach of STAGE (Adriaans and Kager 2010) and does not assume 

an a priori representation of phonotactic constraints. Since STAGE showed that a 

lexicon is not necessary for phonotactic learning to take place, STAGE follows suit and 

also has no lexicon.  
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2.2 Positive constraints 

 

STAR also explores the possible role of positively defined constraints that reward 

rather than penalize certain sequences (hereafter, positive constraints) in a phonotactic 

grammar. The theoretical motivation behind the induction of positive constraints 

comes from a usage-based approach to phonology (Bybee 2006). Distinct elements 

that frequently pattern together have been shown to be treated functionally as a single 

unit by the grammar, and positively defined constraints that can link and reward certain 

overrepresented sequences (in this case phones) provide the mechanism necessary to 

do so (Välimaa-Blum 2009). For example, /ç/ has an extremely high co-occurrence 

rate with /i/ in Japanese, and a positive constraint like +çi that says, “Assign a reward 

for every instance of çi in the output,” grammaticalizes this pattern straightforwardly. 

This means that when the model encounters an input like [çto] ‘person’, it can 

epenthesize /i/ in the output to form /çito/ to satisfy the constraint. The applicability of 

positive constraints is not limited just to the usage-based approach. They have also 

been shown to be advantageous in driving autosegmental spreading (e.g., (+)Spread-

F(eature): Assign a reward for each segment linked to F as a dependent; Kimper 2016).  

Because the approach taken here is dependent on language use, constraints are 

assumed to be induced based on positive occurrences in the language rather than 

possible but never occurring phone combinations (Välimaa-Blum 2009). This 

characterization of learning strictly based on positive evidence seemingly stands in 

opposition to what Tesar and Smolensky (1998) call the utilization of implicit negative 

evidence. Tesar and Smolensky (1998) argue that given the OT framework, every 

instance of positive evidence necessarily results in the rejection of all possible 

competitors generated by GEN. The infant is assumed to have access to the rejected 

candidates, which essentially form implicit but positive instances of negative evidence. 

Assuming innate constraints fully equips the learner to pick up on systematic, 

consistent gaps in the input data, from which the learner can conclude that these forms 

must be prohibited in their language (Hayes 1999).  

The question that seems seldom asked, however, is at what point the learner can 

arrive at the conclusion that unencountered forms are indeed prohibited. To state 

differently, how much implicit negative evidence is enough? This issue is especially 

relevant to models like STAR that take a more input-centric approach to phonotactic 

learning and do away with innate constraints. Since constraints are induced based 

solely on encountered forms, the learner has no way of dealing with unencountered 
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forms. As the simulations in section 4 will show, for an input-driven learning algorithm, 

a mechanism that can grammaticalize frequently co-occurring units (e.g., positive 

constraints) is useful for learning sequences that are preferred in the language in the 

absence of sufficient implicit negative evidence. 

 

2.3 Experimental work on Japanese high vowels 

 

In a well-known series of studies by Dupoux et al. (1999, 2011), French and Japanese 

speakers were presented with acoustic stimuli with the high back rounded vowel [u] 

of varying durations ranging from 0 ms to 90 ms occurring between two consonants 

(e.g., [ebzo] → [ebuːzo]). The stimuli were designed so that when there is no vowel in 

the stimuli, the result is a sequence that is phonotactically legal in French but illegal in 

Japanese. Their results showed Japanese speakers were unable to distinguish vowel-

ful vs. vowel-less tokens, erring heavily towards perceiving both as vowel-ful. The 

authors propose that the results are due to the prohibition against heterorganic 

consonant sequences in Japanese phonotactics and that a ‘top-down’ phonotactic effect 

on perception forces such illegal sequences to be repaired automatically as the nearest 

legal sequence, namely one that epenthesizes a minimal vowel to break up such 

sequences.  

Contrary to what one might expect from the perception patterns above, Japanese 

speech actually contains many heterorganic consonant sequences. During production, 

speakers of standard modern Japanese at the least devoice the high vowels /i/ and /u/ 

when the vowels are unaccented and flanked by two voiceless obstruents. For example, 

while the /u/ in /kúɕi/1 ‘free use’ and /kuɕi/ ‘skewer’ are both between two voiceless 

consonants, only /kuɕi/ ‘skewer’ undergoes devoicing because the vowel is unaccented. 

Likewise, the /u/ is unaccented in both /kuki/ ‘stem’ and /kuɡi/ ‘nail’, but only /kuki/ 

‘stem’ undergoes devoicing because the /u/ is flanked by two voiceless stops, namely 

/k/. Although the process is more commonly called high vowel devoicing in the 

literature, the process actually results in a range of articulatory effort, from simple loss 

of voicing to complete deletion of the vowel (Shaw and Kawahara 2018), and thus the 

term ‘reduction’ is used hereafter to encompass both devoicing and deletion. Crucially 

for the current study, Whang (2018) showed that when /i, u/ reduce, whether the 

reduction results in simple devoicing or complete deletion is not random, but rather 

 

1 Note that underlying |s| neutralizes to /ɕ/ before /i/ in Japanese. 
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conditioned on the predictability of the reducing vowel in a given context. Highly 

predictable vowels tend to delete while less predictable vowels tended to devoice, 

leaving behind coarticulatory traces in the burst/frication of the preceding consonant. 

In the experimental evidence is a puzzle. Japanese speakers consistently produce 

numerous, heterorganic, voiceless consonant sequences as a consequence of high 

vowel reduction. However, Japanese listeners show a dispreference for such sequences 

and repair them by epenthesizing a high vowel. One might argue that the perceptual 

repair is simply recovering a vowel that is lost due to a productive and predictable 

process. However, Ogasawara and Warner (2009) found in a lexical judgment task that 

when Japanese listeners were presented with unreduced forms of words where 

reduction is typically expected, reaction times were longer than when presented with 

reduced forms. This suggests that reduced forms, despite their phonotactic violations, 

can have a facilitatory effect on lexical access due to their commonness, making vowel 

recovery actually unnecessary (Cutler et al. 2009, Ogasawara 2013). In other words, 

CC sequences are not perceptually equivalent to CVC sequences to Japanese listeners. 

Furthermore, Japanese infants also begin to show a noticeable decline in 

discriminating CC vs. CVC sequences by the age of 1 year; 0 months (Kajikawa et al. 

2006, Mugitani et al. 2007), at a stage when they should know only a few words 

(Kalashnikova et al. 2016), making it difficult to argue that the CC repair to CVC is a 

lexicon-driven effect. The current paper, therefore, models the perceptual repair 

process of Japanese listeners from a purely phonotactic perspective, exploring how 

Japanese listeners come to exhibit a CVCV preference despite learning the phonotactic 

structure of the language from input that contains numerous violations. 

 

3. The Statistical Learning and Repair Model (STAR) 

 

3.1 Input for the model 

 

As is generally the case with phonotactic models, STAR is trained and tested on 

phonetically transcribed data. The input for the model assumes a segmental rather than 

a featural representation, allowing the model to explore how far learners can get with 

phonemes alone. A “stage of vulnerability” is also assumed, where an infant has yet to 

realize that certain phones are in allophonic relationships and thus treat them all as 

separate phonemes (Hayes 2004). The symbolic representation for the input to STAR 

is based on the results from Whang (2018), which suggest that when high vowels 
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reduce, the variability between deletion and reduction is not arbitrary but conditioned 

by how predictable the reducing vowel is in a given consonant. The predictability of a 

vowel is associated with whether only one or both of /i, u/ can occur after a given 

consonant, which is summarized in Table 1 below. 

 

Table 1: Consonants and possible following vowels according to high vowel 

predictability. △ means vowel allowed in limited cases (e.g., loans). 

 

  i u non-high 

Unpredictable 

p ○ ○ ○ 

k ○ ○ ○ 

ɕ ○ ○ ○ 

Predictable 

ʦ × ○ × 

ʨ ○ △ ○ 

ɸ △ ○ △ 

ç ○ △ ○ 

s × ○ ○ 

 

Whang (2018) excluded /p/ due to its overall rarity (Tsuji et al. 2014) and /ʦ/, which 

can only be followed by /u/, unlike other consonants that generally allow non-high 

vowels to follow as well. Acoustic analyses showed that predictable high vowels 

tended to delete while they devoiced in non-predictable contexts, leaving behind traces 

of the coarticulated vowel.  

Since in the unpredictable cases (i.e., [k, ɕ] and by extension [p]) the consonant 

burst/frication noise includes coarticulatory information about the following vowel, 

this means that words like /kiɕi/ ‘a coast’ and /kuɕi/ ‘a skewer’ can reliably 

distinguished even if the first vowel is reduced because the coarticulatory information 

is retained in the /k/ (i.e., [kⁱɕi] versus [kᵘɕi]).2 This coarticulatory information is also 

present when the following vowel is not reduced (e.g., /kizu/ → [kⁱizu] ‘a wound’; 

also /ɕi/ → [ɕⁱi] in the two previous examples). In terms of the model, this means that 

words like the three examples given above can be symbolically represented as the 

 

2  Note that consonants with phonetic /i, u/ coarticulation are assumed to be distinct from 

consonants with phonemic secondary articulations (e.g., [kⁱ] ≠ [kʲ]) following the conventions 

of Japanese phonological literature. Whether these segments actually differ acoustically 

remains to be investigated. 
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following: <kⁱ ɕⁱ i> <kᵘ ɕⁱ i> <kⁱ i z u>. For the predictable cases (i.e., [ɸ, s, ç, ʨ] and 

by extension [ʦ]), the consonants were shown to not carry the vowel information, so a 

word like /çito/ would be produced as [çto], which in turn means that the input for the 

model would also look like <ç t o>.  

One million pseudo-Japanese words that were two to five morae in length were 

generated to serve as the model’s training data. These ‘words’ were generated with a 

word generator that we built based on Japanese phoneme transition probabilities, 

which were calculated from a 288 million word lexical corpus of Asahi Newspaper 

printed between 1985 and 1998 (Tamaoka and Makioka 2004). The benefits of using 

a generator lie in its flexibility and ability to generate as many words as necessary that 

are realistic (and often indeed real) without having to rely on linguistic intuition. 

Examples of the generated pseudo words are provided in Appendix A. 

There are three issues with the corpus data, however, that warrant some discussion. 

First, because the corpus was phonemically transcribed based on orthographic forms, 

the pseudo-words generated were converted to reflect overt forms. This conversion 

was necessary because the input for an infant learner is the output of the infant’s 

caretaker, which presumably has undergone normal phonological processes of the 

language, including high vowel reduction. As briefly mentioned above, coarticulatory 

information was symbolically represented in the data for cases in which devoicing 

rather than deletion is likely to occur (i.e., unpredictable cases). For example, [ɕi] was 

represented as <ɕⁱ i> (i.e., i-coarticulated ɕ followed by i). This essentially makes all 

high vowels predictable after a given C1. While this may seem redundant at first glance, 

it has been shown that adult Japanese speakers can reliably predict which high vowel 

will occur based solely on the acoustic information available in i- and u-coarticulated 

[ɕ] (Beckman and Shoji 1984). In addition, this coarticulation effect is reported to be 

present even when no full vowel follows the consonant (Whang 2018). If it is the case 

that adults are sensitive to the acoustic difference of these sounds, it does not seem 

unreasonable to assume that infants may be sensitive to them as well. 

Second, the transitional probabilities reported in Tamaoka and Makioka (2004) did 

not take into account word boundaries. The study looked simply at how frequent 

particular phonemes were in the corpus. Bimoraic transitional probabilities were also 

reported. Because word boundary information was absent in the study, the words 

generated by the fake word generator also did not include word boundaries. This in 

turn means that the models did not induce any constraints that involve word boundaries 

either.  
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Third, since only unaccented high vowels get reduced and pseudo-words do not have 

lexical pitch accents, the rate in which reduction applies when a high vowel is 

surrounded by two voiceless obstruents had to be estimated. An estimate of 55% was 

taken from Maekawa and Kikuchi (2005), which was a large corpus-based study of 

high vowel reduction rates in spontaneous speech. The same study showed that vowels 

reduced the least when flanked by fricatives, and thus the reduction rate presented in 

the Maekawa and Kikuchi paper were also applied to the generated data.  

 

3.2 Learning the grammar 

 

The statistical portion of STAGE, which STAR is based on, calculates the 

observed/expected ratios (O/E) of all biphones that occur in the input data to induce 

phone-specific constraints when an assumed threshold is reached. O/E ratios compare 

how often a biphone actually occurs in the data (observed) to how often that biphone 

should have occurred if all segments had equal likelihoods of combining (expected). 

The O/E ratio for a given biphone xy is calculated by dividing the probability of xy by 

the product of the summed probability of all biphones beginning with x and the 

summed probability of all biphones ending with y, as shown in the equation below. 

The resulting value quantifies the magnitude of the biphone’s over-/under-

representation in the data. An O/E of 1.0 indicates that a biphone occurred exactly as 

often as expected. An O/E of 0.5 indicates that a biphone occurred half as often as 

expected, and an O/E of 2.0 indicates that a biphone occurred twice as often as 

expected. 

 
�(��)

�(��)
=

��(��)

∑��(�	) ∗ ∑��(
�)
 

 

The frequency-driven constraint induction mechanism (FDCI) of STAGE induces a 

markedness constraint against a biphone when the O/E of the sequence is less than 0.5 

(*xy); and when the O/E is higher than 2.0, FDCI induces a contiguity constraint that 

keeps a matching contiguous sequence in the input also contiguous in the output (e.g., 

CONT-yz. The markedness and contiguity constraints are defined as follows: 

 

- *xy: Assign a violation for every xy sequence in the output. 
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- CONT-yz: Assign a violation for every yz sequence in the input that is not 

preserved in the output. 

 

STAR induces and ranks constraints in the same way as STAGE, but there are two 

main differences between the two models. First, whereas STAGE induces contiguity 

constraints for overrepresented biphones, the very same constraints in STAR are 

redefined positively as constraints that operate strictly on the output, rewarding 

matches rather than penalizing violations, defined as follows: 

 

- +yz: Assign a reward for every yz sequence in the output. 

 

Note that the choice to look at biphones rather than a longer sequence was not for the 

sake of simplicity but because in perception, the information necessary to recover a 

reduced vowel is wholly contained in the consonant preceding it. By focusing on 

biphones, the model can learn that a certain consonant C1 frequently cooccurs with a 

certain vowel V1, and also that C1C2 clusters are rare. Therefore, when the model 

encounters a word that contains a C1C2
 

cluster, it only needs C1 to decide that V1 should 

be inserted. The role that C2 plays is simply to inform the model of the location in 

which the target vowel is to be inserted. In other words, while it is true that high vowel 

reduction is conditioned by the voicelessness of the two consonants flanking the target 

vowel for production, the consonant following the vowel is irrelevant for the purposes 

of perception.  

The second difference is that in STAR, the constraints are assumed to be weighted, 

as in serial Harmonic Grammar (sHG; Pater 2012), rather than ranked in strict 

domination, as in Optimality Theory (OT; Prince and Smolensky 1993/2004). 

Therefore, the expected values of the biphones are used as weights in STAR rather than 

a means to ordinally rank the constraints as in STAGE. The sHG framework is adopted 

to restrict GEN to performing one operation at a time to avoid the infinite goodness 

problem that is inherent to positive constraints (Prince 2007, Kimper 2016). Weighted 

constraints, therefore, were used for the sake of consistency with the general sHG 

framework and not based on a commitment to a particular interpretation of the 

constraints’ numerical values.  
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3.3 Modeling perceptual repair 

 

Having learned the grammar based on the training data, the model is presented with 

test data and given the task of deciding whether phonotactic repair is required, and if 

so how. Based on a given input, a GEN mechanism generates a faithful candidate and 

all possible forms which may or may not be grammatical. The only restriction is that 

the input is always assumed to be the correct overt form (i.e., perfect noiseless 

perception), and thus every segment retains its identity. The model therefore calculates 

the most harmonic surface form that would be pronounced as the overt form 

(Smolensky 1996, et seq.). Also, GEN can only generate candidates that differ from the 

input by only one segment (à la sHG), and thus the candidate set is finite. GEN 

performs one of two operations: delete or epenthesize a segment (consonant or vowel). 

Next, an EVAL mechanism takes the candidates generated by GEN and returns the most 

optimal surface form. Since the constraints are weighted, the form that has the highest 

sum of constraint values is chosen as the winner. The optimal form is then fed back 

into GEN for another set of candidates with one-segment differences, which is then 

evaluated again by EVAL. This GEN → EVAL loop is repeated until the derivation 

converges on a form that can no longer be improved with single segment operations. 

 

4. Simulation 

 

STAR was tested on its ability to epenthesize the correct high vowel when it 

encountered a consonant cluster. How the models dealt with unreduced forms was also 

tested. If the model learned the correct constraint set and ranking, it should return the 

same output for the reduced and unreduced forms (e.g., [ski, su̥ki, suki] → /suki/ ‘like’). 

As discussed in section 2, STAR uses positive constraints to deal with sequences that 

were not encountered during training. STAR is compared directly to a STAGE-like 

model that induces contiguity constraints. The model being compared is not STAGE 

per se, as STAR lacks a constraint generalization mechanism and uses FDCI only. To 

avoid confusion, the STAGE-like version of the model hereafter is called the 

continguity statistical learning and repair model (C-STAR) and the model being 

proposed here, the positive statistical learning and repair model (P-STAR), since it 

induces positive constraints. Because the contiguity and positive constraints were 

induced by the same biphone sequences from the same training data, their weights (i.e., 

the biphones’ expected values) were equal in the two models. The markedness 
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constraints in the EVAL mechanism for both models penalize candidates for each 

violation. 

Constraints that apply to VC sequences were excluded in the simulations to 

introduce a processing bias towards prioritizing CV sequences. Phonologists have long 

been aware of a crosslinguistic preference for CV sequences, and in Optimality Theory 

this preference was formalized in the form of an ONSET constraint that penalizes a 

syllable that lacks an onset and a NOCODA constraint that penalizes a syllable that has 

a coda. Together, the result is a preference for a CV structure. In addition, Endress and 

Bonatti (2007) argue that when processing speech on-line there are two mechanisms 

at play. The first mechanism rapidly extracts structural information (syllables) from 

speech, which is then fed to a slower mechanism that detects statistical regularities 

within the extracted structures. In other words, there is an innate linguistic restriction 

on what sequences statistical computations can be applied to. If this is indeed the case, 

it does not seem unreasonable to think that calculating distributional probabilities of 

CV is prioritized over VC sequences in linguistic systems.3  

 

4.1 Materials 

 

Examples of the training words can be found in Appendix A. To train the model, one 

million tokens of pseudo-Japanese words were generated by the word generator as 

described in section 3.1. The training words were two to five morae in length. Test 

data were 33 reduced-unreduced pairs of real words. For each of the 11 out of 12 

possible voiceless obstruent-high vowel combinations, there were three words that 

began with the combination. Two of the three test words contained one target vowel 

(e.g., /ɸuku/ ‘clothes’; /ɸuɕi/ ‘knuckle’), whereas the third had two target vowels (e.g., 

/ɸuɕikateː/ ‘motherless family’). This means that of the 33 pairs in the test data, 22 of 

them had one target vowel and the remaining 11 had two target vowels, for a total of 

44 reducing environments. A complete list of the test words used can be found in 

Appendix B. 

 

 

3  Although not presented here in consideration of space, a separate simulation showed that a CV 

bias can be induced from the data anyway. This suggests that at least in the case of Japanese, 

assuming an innate CV bias may not be necessary. 
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4.2 Procedures 

 

The FDCI mechanism induced constraints based on the training data. Both C-STAR 

and P-STAR induced a markedness constraint for biphone sequences with an O/E ratio 

≤ 0.5. For the STAGE-like C-STAR, contiguity constraints were induced for biphone 

sequences with an O/E ratio ≥ 2.0. For P-STAR, the same O/E threshold of 2.0 was 

used to induce positive constraints. The two models were then given the test data and 

the task to determine whether vowel epenthesis is required for any given word, and if 

so what vowel. The models were evaluated on how they dealt with reduced and 

unreduced forms separately. The reduced forms were evaluated on whether a vowel 

was inserted between the target consonant clusters. If a vowel was inserted, it was then 

evaluated for the rate in which the appropriate vowel was inserted. For the unreduced 

forms, which should be favored by the CVCV bias of Japanese, the models were 

evaluated on whether any vowels were deleted or inserted despite the words needing 

none.  

 

4.3 Results 

 

The results for unreduced forms are reported first. Both C-STAR and P-STAR had a 

success rate of 100%. A survey of the constraints revealed that this is because for all 

CV biphones, the highest ranked constraints were for the overrepresented sequences 

(i.e., contiguity or positive constraints). This means that in C-STAR, the faithfulness 

constraints are responsible for keeping CV sequences in the input intact in the output. 

Likewise, in P-STAR, while the positive constraints do not care about the input, it still 

prefers the output candidates that contain the particular CV sequences.  

The results for the reduced forms in the test data, however, show an advantage of P-

STAR over C-STAR. First, when it comes to identifying the location in which vowel 

epenthesis is required, P-STAR is successful 100% of the time (44 of 44) , but C-STAR 

fails to epenthesize anything in three instances (i.e., in [ɕᵘkᵘseː] ‘purge’, [ɸ kᵘu] 

‘clothes’, and [çto]‘person’). Second, among the cases in which the two models 

correctly identified the contexts where epenthesis is expected, P-STAR outperforms C-

STAR by a wide margin with a success rate of 89% (39 of 44) versus 17% (7 of 41). A 

breakdown of what vowels C-STAR and P-STAR inserted for each consonant is shown 

below in Tables 2 and 3, respectively. 
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Table 2: Vowels inserted for C1 by C-STAR. 

 

 Unpredictable Predictable  

 /i/ target /u/ target /i/ target /u/ target  

 pi ki ɕi pu ku ɕu ʨ ç ʦ ɸ s  

i - 1 1 - 1 1 1 0 1 - 1  

u 2 1 - 1 0 0 2 - 1 1 1  

a 1 - - - 2 - - - 1 - 2  

e - 2 2 - - 1 2 1 - 1 -  

o - - 1 2 3 - 3 1 2 - 1  

Correct 0/3 1/4 1/4 1/3 0/6 0/3 1/5 0/3 1/5 1/3 1/5 17% 

 

Table 3: Vowels inserted for C1 by P-STAR. 100% accuracy except /s/. 

 

 Unpredictable Predictable  

 /i/ target /u/ target /i/ target /u/ target  

 pi ki ɕi pu ku ɕu ʨ ç ʦ ɸ s  

i 3 4 4 - - - 5 3 - - -  

u - - - 3 6 3 - - 5 3 -  

a - - - - - - - - - - 5  

e - - - - - - - - - - -  

o - - - - - - - - - - -  

correct 3/3 4/4 4/4 3/3 6/6 3/3 5/5 3/3 5/5 3/3 0/5 89% 

 

P-STAR consistently epenthesized /a/ after /s/ due to a high ranking +sa constraint 

being induced that was weighted higher than +su. This was due to /a/ being more 

frequent than any other vowel after /s/ in the Japanese training data. 

For C-STAR, the failure to insert a vowel were due to two different reasons: (i) 

absence of a markedness constraint against particular consonant clusters and (ii) 

presence of CONT constraints that favor keeping certain consonant clusters intact. 

When the model did insert a vowel in the correct contexts, the choice of vowel was 

often wrong because the combination of CONT and markedness constraints could not 

arrive at the correct winner. First, the one case in which the lack of a markedness 

constraint was problematic is shown (i.e., [ɕᵘ kᵘseː] ‘purge’). Table 4 below shows in 

detail how the model evaluated the word. In the first iteration for [ɕᵘkᵘseː], the 
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shortcomings of just having CONT and markedness constraints become clear. Here the 

high ranking constraint *kᵘs successfully eliminates the faithful candidate /ɕᵘkᵘseː/. 

However, the CONT constraints fail to pick out the winner from among the 

epenthesized candidates. The CONT constraints do nothing here because the input 

lacked a vowel to begin with, resulting in multiple candidates with the same total 

weight. The model is required to return an output regardless, so it selects a winner at 

random (the candidate that GEN happened to list first among the multiple candidates), 

which happens to be the wrong candidate /ɕᵘkᵘoseː/. The winner of the first iteration is 

then used as the input in the second iteration. Here, none of the candidates are 

eliminated because the model induced no markedness constraint against /ɕᵘkᵘ/, making 

the faithful candidate equally good as any of the epenthesized candidates. Therefore, 

the model again picks a winner at random (i.e., /ɕᵘkᵘoseː/).  

 

Table 4: Evaluation of [ɕᵘkᵘseː] ‘purge’ by C-STAR. Correct winner marked by 

✔. Actual winner picked by model marked by ✗. 

 

1  CONT-kᵘu *kᵘs CONT-seː CONT-ɕᵘu Total 

 [ɕᵘ kᵘ seː] 0.001318 0.000510 0.000247 0.000197 Weight 

 /ɕᵘ kᵘ seː/  -1   -0.00510 

 /ɕᵘ kᵘ aseː/     0 

 /ɕᵘ kᵘ iseː/     0 

✔ /ɕᵘ kᵘ useː/     0 

 /ɕᵘ kᵘ eseː/     0 

✗ /ɕᵘ kᵘ oseː/     0 

 

2  CONT-kᵘu *kᵘs CONT-seː CONT-ɕᵘu Total 

 [ɕᵘ kᵘ oseː] 0.001318 0.000510 0.000247 0.000197 Weight 

✗ /ɕᵘ kᵘ oseː/     0 

 /ɕᵘ akᵘ oseː/     0 

 /ɕᵘ ikᵘ oseː/     0 

 /ɕᵘ ukᵘ oseː/     0 

 /ɕᵘ ekᵘ oseː/     0 

 /ɕᵘ okᵘ oseː/     0 

In contrast, shown below in Table 5 is how P-STAR evaluated the same word. The 

lack of the markedness constraint *ɕᵘkᵘ is not a problem for P-STAR because positive 

constraints are only concerned with the output. In the first iteration, the candidate 
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/ɕᵘkᵘuseː/ wins because in addition to satisfying the +se: constraint like all of the other 

candidates, it also satisfies the highest ranked constraint +kᵘu. This candidate is then 

used as the input for the next iteration. Here, all candidates satisfy +kᵘu and +se:, but 

/ɕᵘukᵘuseː/ is chosen as the winner because it also satisfies the lowest ranked but 

nevertheless decisive +ɕᵘu constraint. 

 

Table 5: Evaluation of [ɕukuseː] ‘purge’ by P-STAR. Clear winner. 

 

1  +kᵘu *kᵘs +seː +ɕᵘu Total 

 [ɕᵘ kᵘ seː] 0.001318 0.000510 0.000247 0.000197 Weight 

 /ɕᵘ kᵘ seː/  -1 +1  0.000263 

 / ɕᵘ kᵘ aseː/   +1  0.000247 

 / ɕᵘ kᵘ iseː/   +1  0.000247 

☞ / ɕᵘ kᵘ useː/ +1  +1  0.001565 

 / ɕᵘ kᵘ eseː/   +1  0.000247 

 / ɕᵘ kᵘ oseː/   +1  0.000247 

 

2  +kᵘu *kᵘs +seː +ɕᵘu Total 

 [ɕᵘ kᵘ useː] 0.001318 0.000510 0.000247 0.000197 Weight 

 /ɕᵘ kᵘ useː/ +1  +1  0.001565 

 /ɕᵘ akᵘ useː/ +1  +1  0.001565 

 /ɕᵘ ikᵘ useː/ +1  +1  0.001565 

☞ /ɕᵘ ukᵘ useː/ +1  +1 +1 0.001762 

 /ɕᵘ ekᵘ useː/ +1  +1  0.001565 

 /ɕᵘ okᵘ useː/ +1  +1  0.001565 

 

Second, in the case of the words [ɸ kᵘu] ‘clothes’ and [ç to] ‘person’, C-STAR failed 

to insert a vowel because there were eight CC sequences that were overrepresented in 

the data (<pⁱ ʦ> <ɕⁱ kʲ> <ɕᵘ pʲ> <ɕᵘ ʦ> <ɸ kᵘ> <ç t> <ç ʦ> <ç kⁱ>), which resulted in 

the induction of contiguity constraints. Since the two words each involved one of these 

sequences, namely <ɸ kᵘ> and <ç t>, the faithful candidate was incorrectly chosen as 

the winner. Table 6 below is an example of how the word [çto] ‘person’ was evaluated 

by C-STAR. Since <ç t> happened to be one of eight CC sequences that were 

overrepresented in the data, the model fails to recognize that a vowel needs to be 
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epenthesized. In addition, even if the model were to have identified that vowel 

epenthesis is required in the absence of a +CC constraint, the model still cannot choose 

among the four candidates marked with question marks that were not ruled out by 

markedness constraints. The CONT-çi constraint does nothing here because there is no 

vowel in the input for the faithfulness constraint to refer to. There are no constraints 

against *çe and *çu because there were no words in the training data containing such 

sequences. What this means is that in C-STAR, the winner is chosen at random when 

there are multiple candidates that have the same total weight, showing again that a 

combination of CONT and markedness constraints fail to identify the correct vowel to 

epenthesize. 

 

Table 6: Evaluation of [çto] ‘person’ by C-STAR. Wrong winner marked ✗. 

 

  CONT-to *ça CONT-çi CONT-çt Total 

 [çto] 0.001499 0.000428 0.000326 0.000133 Weight 

✗ /çto/     0 

 /çato/  -1  -1 -0.000621 

? /çito/    -1 -0.000410 

? /çuto/    -1 -0.000410 

? /çeto/    -1 -0.000410 

? /çoto/    -1 -0.000410 

 

For P-STAR, in contrast, the lack of a vowel in the input is not a problem since the 

positive constraints are only concerned with the output candidates. Table 7 shows how 

the same word [çto] ‘person’ from Table 6 was evaluated by P-STAR. Although the 

faithful candidate is rewarded by the +çt constraint, it still loses to the correct winner 

/çito/ because the constraint +çi has a higher weight. 
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Table 7: Evaluation of [çto] ‘person’ by P-STAR. Clear winner. 

 

  +to *ça +çi +çt Total 

 [çto] 0.001499 0.000428 0.000326 0.000133 Weight 

 /çto/ +1   +1 0.001632 

 /çato/ +1 -1   0.001071 

☞ /çito/ +1  +1  0.001825 

 /çuto/ +1    0.001499 

 /çeto/ +1    0.001499 

 /çoto/ +1    0.001499 

 

5. General discussion and conclusion 

 

This paper proposed a computational model that uses the frequency-driven constraint 

induction mechanism of STAGE to induce phonotactic constraints for the purposes of 

learning the phonological process of recovering a reduced high vowel in Japanese. The 

model was quite successful at learning to recover reduced high vowels, even without 

access to features that would allow for more general constraint induction. However, 

implementing the generalization mechanism from STAGE and a feature-level 

representation to the model could help resolve the issue of /sC/ clusters being 

consistently epenthesized with /a/ (see Table 3). It is possible that this high frequency 

of /sa/ is due to the word generator being based on a corpus of newspapers, which has 

a high occurrence of Sino-Japanese words. Whang (2021) showed that in a corpus of 

spontaneous Japanese speech, /su/ is in fact the most frequent s-initial CV sequence. 

Regardless, this frequency discrepancy shows that if learning is strictly input based, 

the grammar ultimately acquired will change depending on the data the model receives. 

The model’s task, however, is not to recover just any vowel but high vowels. To state 

differently, there is a rather strict restriction on what CVC sequence an overt CC 

sequence can correspond to in Japanese—the V is a high vowel (i.e., either /i/ or /u/ 

and no other vowel). This greatly narrows down the choice of candidates, and since 

the only high vowel that can follow /s/ in Japanese is /u/, the choice becomes a rather 

simple one. Because the weight of a general constraint is the sum of all specific 

constraints supporting it divided by the number of biphones affected by the 

generalization in STAGE, it can never outrank the highest specific constraint that 
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supports it. So if one assumes that the model induces a general constraint in the form 

of +{voiceless obstruent}{high vowel}, the highest weighted constraint supporting it 

would be +su in the input data used for this study. Although +su is ranked lower than 

+sa, the general and +su constraints together could result in a gang-up effect that wins 

over +sa, resulting in the correct epenthesis of /u/ after /s/.  

Even if the implementation of a feature-based representation and a generalization 

mechanism were to fail in correcting the issue with /s/, this is not  fatal from a 

developmental point of view, since infants eventually learn and comprehend words. 

With the addition of a lexicon, the grammar can keep track of what overt forms 

correspond to what meaning (Apoussidou 2007) and eventually acquire a paradigm 

over the lexicon. Such a paradigm can then override the purely phonotactic a-

epenthesis after /s/. The same paradigm would presumably also lead to the 

reinforcement of the other phonotactic epenthesis rules. If it is indeed true that the 

association of /s/ with the high vowel /u/ is acquired later, it does bring up the question 

of whether Japanese speakers treat /s/ differently from the rest of the consonants and 

whether Japanese children ever make the mistake of epenthesizing /a/ instead of /u/ 

after /s/. Regardless of the specific status of /s/, how features, generalization, and 

meaning can be implemented into STAR, and what changes the implementation will 

bring to how the grammar is learned might be an exciting direction to take for future 

research.  

Lastly, although P-STAR simply replaced contiguity constraints with positive 

constraints while leaving the markedness constraints unchanged, it could just as easily 

have been a model that induces only positive constraints. When the markedness 

constraints were removed, the model performed equally well. While this suggests that 

the positive constraints were doing all the work in the Eval of P-STAR, it is difficult to 

be sure with the limited test data set. Whether both the positive and markedness 

constraints are necessary requires further investigation. Also, by redefining the CONT 

constraints, the model essentially lost faithfulness constraints. This is not to say that 

faithfulness constraints play no role in the acquisition of a process like Japanese high 

vowel reduction. Since the positive constraints are supposed to be a mechanism that 

ties distinct units that cooccur frequently to function as one, it may be that the threshold 

for their induction should be much higher than an O/E ratio of 2.0. A survey of the 

+CV constraints that were essential for vowel recovery actually revealed that their O/E 

ratios were all 9 or higher. The one exception to this was the case of +su, which was 

relatively much lower at 3.338. Since grammaticalization of separate units requires 



Modeling a phonotactic approach to segment recovery: The case of Japanese high vowels 291 

heavy use, setting a higher threshold does make sense. Doing so would result in a 

three-tier system, where markedness, faithfulness, and positive constraints can all be 

induced by the same grammar. A similar approach that incorporates the three types of 

grammar is explored in Wilson (2021). Since positive constraints alone were enough 

to successfully epenthesize the correct vowel, such a three-tier model could 

presumably perform the functions of both STAGE and STAR, where the markedness 

and faithfulness constraints perform word segmentation, while the positive constraints 

perform repairs within the segmented words. How such a grammar would work exactly, 

however, requires further research. 

 

 

APPENDIX A 

 

Example of generated words 

m oː  m i ʥ i  w a j uu  o kⁱ i r i r eː ʨᵘ uː 

j u d e s a i  d o r u d a ɕⁱ k a i  m o t o ɕⁱ ʦ u  

ɕᵘ u ʦ u t e kᵘ u o k oː ɕ o p pᵘ u r i ʦ u kⁱ i n ʥ i 

a ʥ i t a ʨⁱ i m e m m a r i ʦ k e j a s u r u ɡⁱ i ɕ a 

 

 

APPENDIX B 

 

Test data 

One target Two targets 

word gloss word gloss 

pikapika ‘to glitter’ pisutoru ‘pistol’ 

piɕari ‘slapping’   

putomaiɴ ‘ptomaine’ pukupuku ‘pudgy’ 

puʦuɴ ‘snap’   

kita ‘north’ kiʦuku ‘severely’ 

kiɕi ‘shore’   

kukeː ‘rectangle’ kuʨikazu ‘talkativeness’ 

kuɸuː ‘scheme’   

ɕita ‘tongue’ ɕiʦukoi ‘persistent’ 
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ɕiseː ‘posture’   

ɕutai ‘subject’ ɕukuseː ‘purge’ 

ɕuɕoː ‘prime minister’   

ʦuki ‘moon’ ʦuʨikabe ‘mud wall’ 

ʦuta ‘ivy’   

ʨikaɴ ‘molester’ ʨikuɕoː ‘damn it!’ 

ʨiçoː ‘ground surface’   

ɸuku ‘clothes’ ɸuɕikateː ‘motherless family’ 

ɸuɕi ‘knuckle’   

çito ‘person’ çisuteriː ‘hysteria’ 

çiɕa ‘rook’   

suki ‘to like’ sukikonomu ‘to be fond of’ 

susu ‘soot’   
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