Effects of recoverability on perception of illusory vowels

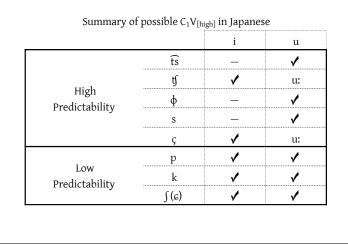
LSA 2016 January 10, 2016 James Whang NYU

Recoverability

- Gestural overlap controlled to preserve <u>recoverability</u> (Chitoran et al. 2002, Silverman 1995, Whang 2014).
 - Predictability: Recovery from context (phonotactics).
 - Interpretability: Recovery from phonetic cues.
- Predictability and interpretability interaction in perception? (Varden 2010)

2

Japanese high vowel reduction


1

- Japanese listeners sensitive to high vowel coarticulation (Beckman & Shoji 1984), but not Brazilian Portuguese speakers (Dupoux et al. 2011) or German speakers (Zimmerer et al. 2013).
 - High vowel reduction in Japanese.

Japanese high vowel reduction

- + Short /i, u/ reduce in $C_1 V C_2$ when C_1 and C_2 both voiceless.
 - · /kita/ \rightarrow [kita] 'north'
 - /ki:ta/ \rightarrow *[ki:ta] 'hear (past tense)'
 - /gita:/ → *[gita:] 'guitar'
 - /kata/ \rightarrow *[kata:] 'model/type'

Predictability in high vowel reduction

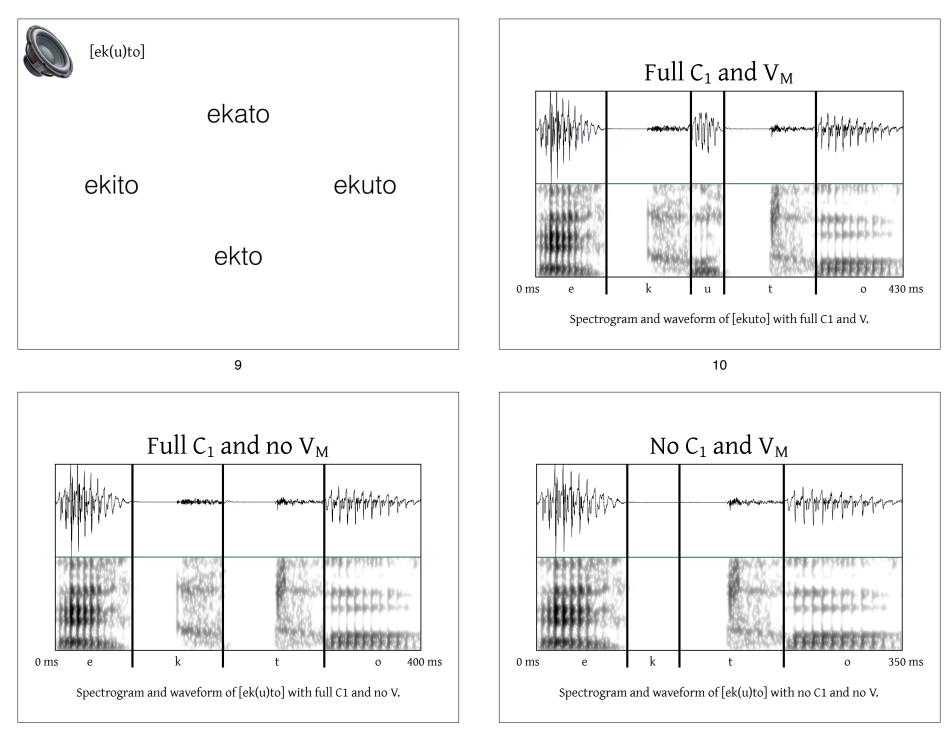
Japanese high vowel reduction

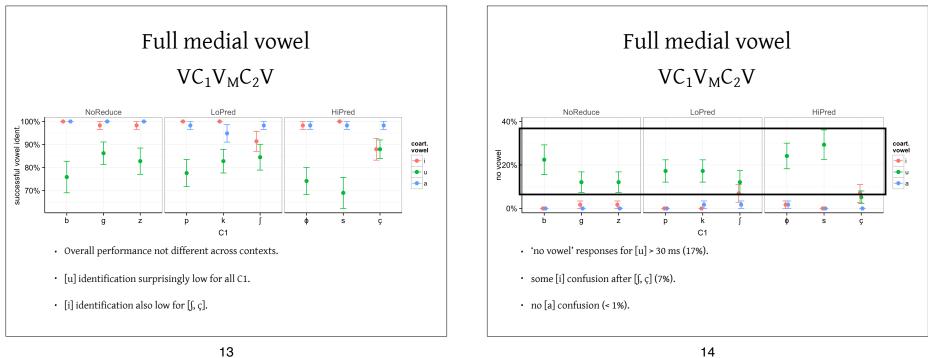
- Devoicing only voicing is lost (Beckman & Shoji 1984).
- Deletion vowel completely lost (Ogasawara 2013, Vance 2008).
- Devoicing vs. deletion depends on predictability (Varden 2010, Whang 2014).
 - Low predictability = high interpretability (devoicing)
 - High predictability = low interpretability (deletion)

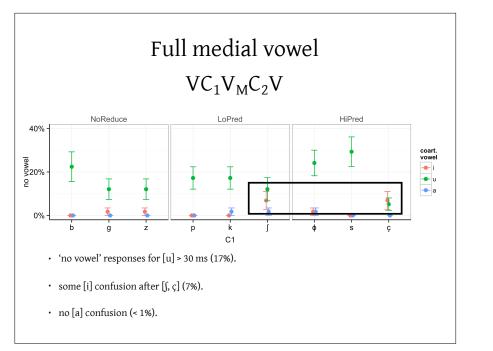
6

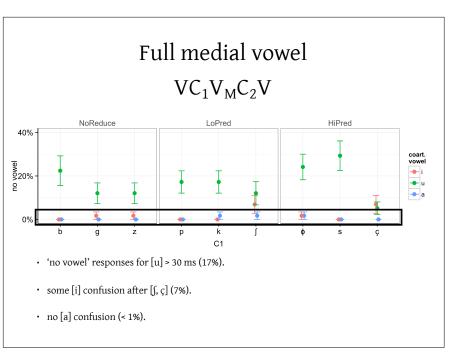
Main Questions

5


- Perception affected by recoverability?
 - Predictability & interpretability inversely related?
- Illusory vowel epenthesis related to high vowel reduction in Japanese?
 - Phonotactic repair? (Dupoux et al. 1999, 2011)
 - Sensitivity to phonetic cues not controlled for.
 - Only high vowels recoverable?
 - Less CVC = CC confusion for non-reducing contexts?


Experiment details


Stimuli for perception experiment


No-Reduce	eb_ko	ez_po	eg_to	ob_ke	oz_pe	og_te
Lo-Predict	ep_ko	eʃ_po	ek_to	op_ke	o∫_pe	ok_te
Hi-Predict	eφ_ko	es_po	eç_to	oф_ke	ospe	oç_te

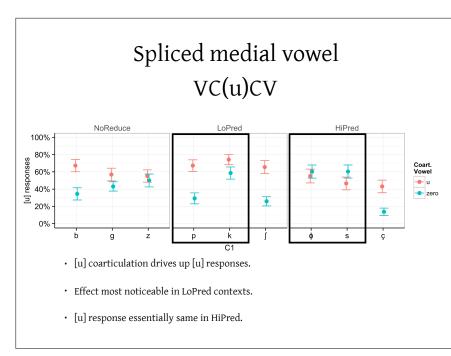
- Participants: 29 monolingual Japanese (16 women, 13 men)
- Medial vowels (V_M): /i, u, a/
- Manipulate C_1 and V_M duration by halves.
- Identification task: <ekto>, <ekato>, <ekito>, <ekuto>

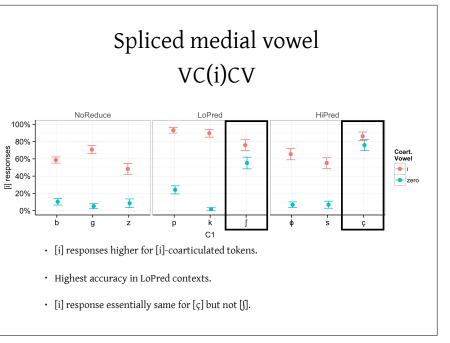
Naturally produced VC_1C_2V

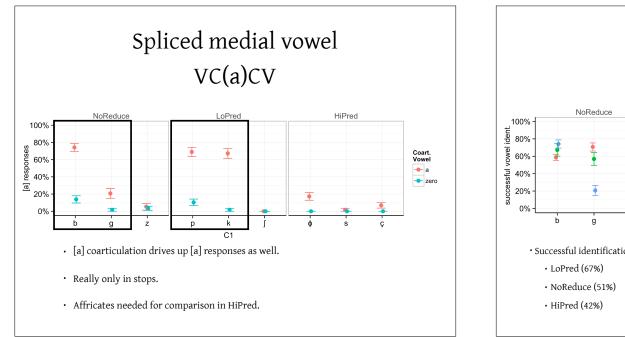
		NoReduce			LoPred			HiPred		
		ebko	egto	ezpo	epko	ekto	е∫ро	eφko	espo	eçto
	а	0.14	0.02	0.03	0.10	0.02	0.00	0.00	0.00	0.00
	i	0.10	0.05	0.09	0.24	0.02	0.55	0.07	0.07	0.76
	u	0.34	0.43	0.50	0.29	0.59	0.26	0.60	0.60	0.14
-	Ø	0.41	0.50	0.38	0.36	0.38	0.19	0.33	0.33	0.10

17

• Most 'no vowel' response in non-reducing contexts.


• Mostly report hearing a vowel.


Naturally produced VC_1C_2V


······									
	NoReduce			LoPred			HiPred		
	ebko	egto	ezpo	epko	ekto	е∫ро	eφko	espo	eçto
а	0.14	0.02	0.03	0.10	0.02	0.00	0.00	0.00	0.00
i	0.10	0.05	0.09	0.24	0.02	0.55	0.07	0.07	0.76
u	0.34	0.43	0.50	0.29	0.59	0.26	0.60	0.60	0.14
ø	0.41	0.50	0.38	0.36	0.38	0.19	0.33	0.33	0.10

- Among vowel responses, [u] most common.
- Default vowel after [ʃ, ç] is [i].

18

21

Spliced tokens LoPred HiPred ۲ Ŧ Ŧ coart. vowel Ŧ -Ŧ <mark>→</mark>i → u Ŧ 🔶 а • 7 n C1 · Successful identification by context: · Successful identification by vowel: • [i] (71%) • [u] (59%) • [a] (25%)

22

Summary

- High vowels confused with 'no vowel' but not [a].
- Vowel coarticulation affects perceived vowel (least in HiPred).
- Vowel coarticulation effect most noticeable in LoPred.
- Low vowel coarticulation also seems recoverable but only in stops (perhaps due to gestural overlap difference).

Conclusions

- Sensitivity to phonetic cues highest in LoPred contexts.
- Bidirectional $C_1C_2 = C_1V_{[+high]}C_2$ confusion, suggests effect of high vowel reduction.
 - Illusory vowel epenthesis in Japanese speakers is due in large part to hyper-sensitivity to vowel-like content in acoustic signal.
 - Phonotactic violation is not the sole factor (contra. Dupoux et al. 1999, 2011).

