

Illusory epenthesis and recoverability-conditioned sensitivity to phonetic detail. James Whang, Department of Linguistics, New York University, james.whang@nyu.edu

Illusory vowel epenthesis?

Japanese listeners tend to perceive [u] between consonant clusters even in the absence of vocalic cues (Dupoux et al. 1999).

- $[C_1C_2] \rightarrow /C_1uC_2/$ is repair mechanism of phonotactic violation.
- Phonetically minimal vowel epenthesized.

High vowels devoice/delete between voiceless obstruents in Japanese.

- $/kita/ \rightarrow [kita]$ 'north'
- $/suki/ \rightarrow [ski]$ 'like'

Devoicing vs. deletion depends on phonotactic predictability (Whang 2014).

		i	u
High predictability	φ	-	\checkmark
	S	-	\checkmark
	Ç		_
Low predictability	р		\checkmark
	k		\checkmark
	\int		\checkmark

Question: How "illusory" is illusory epenthesis really?

- Sensitivity to high vowel-like cues?
- Sensitivity modulated by predictability?

Methodology

- **Participants:** 29 (16 female) Tokyo natives aged 19-22.
- **Task**: Force-choice identification task.
- Materials: Naturally vowel-less vs. spliced vowel-less tokens (splice 2).
- Target vowel = [Ø, i, u, a]

NoReduce	eb_ko	ez_po	eg_to	ob_ke
LoPred	ep_ko	e∫_po	ek_to	op_ke
HiPred	еф_ko	es_po	eç_to	оф_ke

og_te

ok_te

oç_te

oz_pe

o∫_pe

os_pe

NoReduce 100% 80% ξ 60% 40% 20%

Results

educe		LoPredict		HiPredict			
gto	ezpo	epko	ekto	e∫po	ефko	espo	eçto
.02	0.03	0.10	0.02	0.00	0.00	0.00	0.00
.05	0.09	0.24	0.02	0.55	0.07	0.07	0.76
.43	0.50	0.29	0.59	0.26	0.60	0.60	0.14
.50	0.38	0.36	0.38	0.19	0.33	0.33	0.10

the PEP Lab

Table 1: Response rates by vowel and context for naturally vowel-less tokens.

- Vowel identification rates in spliced tokens (Figure 1). • High for [i, u] but not [a].
- Highest in low-predictability contexts.
- Rate of vowel responses in $C_1 \emptyset C_2$ tokens (Table 1).
- Highest in high predictability contexts.
- Lowest in non-reducing contexts.
- High [i] responses for $[\int, c]$, [u] elsewhere.
- Comparison of responses (Figures 2-4).
- Coarticulation in spliced tokens drive up responses of coarticulated vowel compared to vowel-less baseline.
- Most noticeable in LoPred for all vowels.
- [a] responses also higher but only for stops.

Discussion & Conclusion

Difference in identification rates between [i, u] and [a] suggests sensitivity to high vowels cues, stemming from high vowel reduction experience.

Difference in identification rates between LoPred and HiPred contexts suggests recoverability-conditioned

Phonotactic violation is not the sole factor driving perceptual epenthesis (contra. Dupoux et al. 1999). While there is bias towards hearing a vowel, the choice of epenthetic segment is result of phonetic cues in the signal. The same cues can be less perceptible depending on predictability from context

Acknowledgements: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. BCS-

